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ABSTRACT

This paper expands on, and provides a qualified defence of, Arthur Fine’s selective

interactions solution to the measurement problem. Fine’s approach must be understood

against the background of the insolubility proof of the quantum measurement. I first

defend the proof as an appropriate formal representation of the quantum measurement

problem. The nature of selective interactions, and more generally selections, is then

clarified, and three arguments in their favour are offered. First, selections provide the

only known solution to the measurement problem that does not relinquish any of the

explicit premises of the insolubility proofs. Second, unlike some no-collapse interpreta-

tions of quantum mechanics, selections suffer no difficulties with non-ideal measure-

ments. Third, unlike most collapse interpretations, selections can be independently

motivated by an appeal to quantum propensities.
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1 Introduction

In a series of papers in the late 1980s, Arthur Fine proposed a novel solution to

the quantum measurement problem, in terms of selective interactions, or as I

shall call them, selections. The reception to Fine’s approach has been nearly

mute.1 But in light of recent developments and difficulties with other propo-

sals for solving the quantum measurement problem, it may be worth taking

another look at Fine’s proposal. In this paper, I expand on Fine’s original

proposal by providing a general characterisation of selections that is inde-

pendent of the measurement problem. I then defend selections as a valuable

alternative to extant interpretations of quantum mechanics.

My defence of Fine’s original proposal is a qualified one. Unlike Fine, I do

not tie the concept of a selection to that of a measurement interaction. I also

reject Fine’s own philosophical defence of selections as measuring ‘aspects’.

However, suitably re-interpreted as testing quantum dispositions or propen-

sities, selections are coherent; and they have some definite advantages over

other widely-discussed options in the interpretation of quantum mechanics.

Although I shall argue that selections are not conceptually linked to the

measurement problem, it is easier to introduce them formally in the context of

the so-called insolubility proof of the measurement problem. The first part of

the paper is devoted to a discussion of this proof. In Section 2 of the paper, I

introduce some preliminary distinctions and notation, and I describe the basic

intuition underlying the measurement problem. In Section 3, I describe the

premises of the insolubility proof and, in Section 4, I defend it as an appro-

priate formal representation of the problem of measurement. In the second

part of the paper, I turn to the selections approach. Thus, in Section 5, I

introduce the concept of a quantum selection, and I argue that selections are

fully compatible with a) the unitary dynamics of the Schrödinger equation,

1 The exception is Stairs ([1992]), whose reaction, like mine, was mixed. But my criticisms of Fine’s

approach are not Stairs’. On the contrary, I believe that the characterization of selections

provided in Sections 5, 6 and 7 dispenses with most of Stair’s criticisms.
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and b) the denial of the ignorance interpretation of mixtures. I show that

selections can solve the measurement problem without relinquishing any of

the explicit premises that generate the insolubility proof. In Section 6, I show

that selections have at least one advantage over several no-collapse interpre-

tations: unlike these interpretations, selections can naturally accommodate

non-ideal measurements. I then argue, in Section 7, that the selections

approach, unlike the collapse postulate, is not at all ad hoc, but can be

motivated independently by an appeal to quantum propensities.

2 The problem of quantum measurement

2.1 The ignorance interpretation of mixtures

In the most general statistical operator formalism of quantum mechanics,

systems can be in pure or in mixed states. A pure state is represented by

an idempotent operator of trace one; that is, a projection operator P[�], upon

a particular subspace � of the Hilbert space. By contrast, a mixed state, or a

mixture, is a sum of such projectors upon pure states vi with associated

statistical weights (pi, 0� pi� 1, with �pi¼ 1), represented by a non-idempo-

tent operator of trace one: W¼�piP[vi]
.

Mixtures come in two varieties, proper and improper. An improper mixture

is the state ascribed to the component of a composite system in an entangled

superposition, and results from the application of the axiom of reduction to

the composite state. A proper mixture, on the other hand, is not improper, and

typically results from a preparation procedure.2

A much-discussed interpretation of quantum mixtures is the ignorance inter-

pretation. According to this interpretation, a quantum system is in a mixture

W¼�piP[vi]
if and only if the system is really in one of the pure states P[vi]

, but we

do not know which one. Thus, on this interpretation, the probabilities {pi} are

subjective and merely reflect our degree of ignorance.

It is an open question whether this interpretation can be applied to proper

mixtures; typically, that may only be decided on a case-by-case basis. The

following decisive argument shows that the ignorance interpretation is never

available for improper mixtures.3 Consider a composite system S1þ2 in a pure

state W1þ2¼P[ ], where  ¼�i,jcijvi�wj, and where vi, wj are the eigenstates

2 The terminology was first introduced by D’Espagnat ([1971], p. 87) and I follow his use precisely.
3 The original argument can be found in D’Espagnat ([1971], pp. 86–7), although in an incomplete

form which assumes that the contradiction arises only when both reduced mixtures are given the

ignorance interpretation. Hughes ([1989], pp. 149–51) contains the same incomplete version.
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of A, B with corresponding eigenvalues ai, bj. The reduced states W1, W2 can

be derived from the standard identifications (expressions *, in Appendix 1).

We obtain: W1¼�iciicii* vivi*, and W2¼�jcjjcjj* wjwj*. W1, W2 are improper

mixtures, found by derivation from the composite state W1þ2. Let us now

assume that subsystem S1 (S2) is really in one of the states vi(wj) with

probabilities jcii j 2 (jcjjj2). The state of the combined system can then be

reconstructed, in the manner described in Appendix 1. We find that

W1þ2¼�iciicii* vivi*�W2 (or W1��icjjcjj* wjwj*, or if both W1 and W2

are given the ignorance interpretation, then: W1þ2¼�iciicii* vivi*�
�icjjcjj* wjwj*). Thus, on the assumption that W1 (or W2, or both) can be

given the ignorance interpretation, we find that W1þ2 is a mixture; but by

hypothesis, W1þ2 is a pure state; therefore by reductio, neither W1 nor W2 can

be given the ignorance interpretation.

The ignorance interpretation is nonetheless often thought to be required for

a satisfactory solution of the problem of measurement. For it is often assumed

that a solution to the problem of measurement requires that the final state of

the measuring device be a pure state, namely an eigenstate of the pointer

position observable. One aim of this paper is to show that this assumption

is mistaken.

2.2 The eigenstate–eigenvalue link

We can express in this framework the orthodox interpretative principle of

quantum mechanics, the eigenstate–eigenvalue link. The basic version of this

principle is often formulated as follows:

basic e/e link: A system has a value o1 of a physical property O if and only if

the system’s state v is an eigenvector of the self-adjoint operator O that

represents this physical property (i.e. if Ov¼ o1v).

Note that this is a necessary and sufficient condition. In other words, if the

system is not in one of the eigenstates of an operator (if for instance the system

is in a non-trivial superposition of eigenstates of O such as c1v1þ c2v2), then

we are not entitled to say that the system has a value of the property repre-

sented by the operator in question.

However, in this paper I will (inspired by Fine [1987]) formulate the

eigenstate–eigenvalue link in a more developed version, as follows:

extended e/e link: A system has a value of a physical property if and only if

the system’s state is a) an eigenvector of the operator O that represents this

physical property, or b) a proper mixture W¼�pnWn, where O takes a

value with certainty (i.e. with probability one), in every Wn.

The crucial addition of clause b) allows us to ascribe values to the observables

of a system in a mixed state, without requiring that the mixture in question be

ignorance interpretable. Hence, this formulation allows us to ascribe values to
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observables of systems even when the systems are not in eigenstates of the

corresponding operators. However, the ascription of values is still highly

constrained. Values are ascribed to systems whose states are proper mixtures

are over states Wn only if the relevant observable takes a value with prob-

ability one in each Wn. This rules out our ascribing values to improper mix-

tures such as those that represent the state of each component of an EPR-

entangled state, and hence releases us from any undesirable commitment to

Bell-like inequalities, or Kochen-Specker proofs. But it also means that

O-eigenstates fulfil this condition by definition; thus the name (extended

e/e link) is well deserved. There is an important reason why the (extended

e/e link) formulation is to be preferred, which I will discuss in due course.

2.3 The quantum theory of measurement

In order to make a measurement, we must let the quantum object interact with

a measuring device. The quantum theory of measurement, as first formulated

by Von Neumann ([1932]), ascribes a quantum state to the measuring device,

and treats the interaction as a quantum interaction, i.e. one that obeys the

Schrödinger equation.

The theory further supposes that the observable of the system that we are

interested in is represented by self-adjoint operator O, with eigenvectors {�n}

and eigenvalues {�n}. The pointer position observable A is represented by the

self-adjoint operator A, which has eigenvectors {�m} with eigenvalues {�m}.

(And let us here further assume that n¼m, without loss of generality.)

Suppose, then, that we have an object initially in state Wo¼�npnP[�n], where

each �n may be expressed as a linear combination of eigenstates of

the observable O of the system that we are interested in (i.e. �n¼�ci�i);

and a measuring device in Wa¼�nwnP[�n]. Throughout the paper, I refer

to the observable represented by the operator I�A, as well as that represented

by A, as the pointer position observable. The eigenvalues of this observable

are therefore given by the set {�n}. As the interaction between the object

system and the measuring device is governed by the Schrödinger equation,

there must exist a unitary operator U that takes the initial state of the com-

posite system (object systemþmeasuring device) into its final state at the

completion of the interaction, as follows: Wo�Wa!U(Wo�Wa)U�1.

(For further details of the interaction formalism, see Appendix 1).

We can now state the basic intuition behind the problem of measurement.

Take a system in an arbitrary superposition �n¼�ci�i. Then, due to the

linearity of the Schrödinger equation, at the conclusion of an ideal measure-

ment interaction with a measurement apparatus in any pure state, the com-

posite (systemþ device) will be in a superposition of eigenstates of the pointer

position observable. And according to either version of the (e/e link), the
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pointerposition observablecannothave avalue in this state. Butsurelyquantum

measurements do have some outcomes – i.e. they have some outcome or other?

Hence the quantum theory of measurement fails to describe quantum

measurements completely!

3 The insolubility proof of the quantum measurement

The insolubility proofs are attempts to formally describe the measurement

problem, in order to display precisely the set of premises that come into

contradiction. The proofs go back to Wigner ([1963]), and include Earman

and Shimony ([1968]), Fine ([1970]), Brown ([1986]), and Stein ([1997]).

3.1 Some notation

First let me introduce some notation, following Fine ([1970]). Let us denote by

Prob (W, Q) the probability distribution defined by Probw (Q¼qn), for

all eigenvalues qn of Q. And let us denote Q-indistinguishable states W, W0

as W�Q W0. Two states W, W0 are Q-indistinguishable if and only if

Prob (W, Q)¼Prob (W0, Q).

We may now enunciate the following two conditions on measurement

interactions. The insolubility proof (Appendix 2) purports to show that these

two conditions are inconsistent with the Schrödinger dynamics (a fourth

condition is actually required, as we shall see in Section 4).

3.2 The transfer of probability condition (TPC)

Prob(U(Wo�Wa)U�1, I�A)¼Prob (Wo, O)

The transfer of probability condition (TPC) expresses the requirement that

the probability distribution over the possible outcomes of the relevant

observable O of the object system should be reproduced as the probability

distribution over possible outcomes of the pointer position observable in the

final state of the composite (objectþ apparatus) system.4 (TPC) entails the

4 (TPC) is essentially equivalent to Busch, Lahti and Mittlestaedt’s probability reproducibility

condition ([1991], p. 32). Busch, Lahti and Mittlestaedt require that the probability

distribution for the required observable defined by the initial state of the object system is

reproduced in the probability distribution for the pointer observable in the final reduced state

of the apparatus. Suppose that 2Wf
a represents the final reduced state of the apparatus, derived

from the final composite state Û(Wo�Wa)Û�1 by the standard identifications (see expressions (*)

in Appendix 1). The Probability Reproducibility condition reads: Prob (Wo, O)¼Prob (Wf
a, A)

which, given the derivation of the reduced state Wf
a from the final state of the composite by means

of (*), is provably equivalent to (TPC) for observable A.
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following minimal condition on measurements employed by Fine ([1970]) and

Brown ([1986]): a unitary interaction on a (objectþ apparatus) composite is a

Wa measurement only if, provided that the initial apparatus state is Wa, any

two initial states of the object system that are O-distinguishable are taken into

corresponding final states of the composite that are (I�A)-distinguishable. So

we can use the pointer position of the measuring apparatus to tell apart two

initial states of the object system that differ with respect to the relevant

property.5

But is (TPC) really a necessary condition on measurements? It could be

argued that an interaction that transfers only part of the probability distribu-

tion of the object observable to the pointer observable is nonetheless a mea-

surement, albeit only an approximate one, for some information is thereby

transferred. (For instance, an interaction that can only distinguish two parti-

cular O-eigenstates is a measurement of sorts.) This worry about (TPC) seems

deep and legitimate to me. I will argue in Section 4.3 that the measurement

problem arises in the highly idealised conditions imposed by the formal quan-

tum theory of measurement; and in the context of such idealisations (TPC) is

justified.6

3.3 The occurrence of outcomes condition (OOC)

UðWo � WaÞU�1 ¼ �cnWn where 8Wn9 �n: ProbWn ðI � A ¼ �nÞ ¼ 1

The occurrence of outcomes condition (OOC) is often taken to express the

requirement, inspired by the eigenstate–eigenvalue link, that the final state of

the composite be a mixture over eigenstates of the pointer position observable.

But to be precise, it expresses the more general idea that the final state of the

composite must be a mixture over states in each of which the pointer position

observable takes one particular value or other with probability one.

I can now provide the main reason for adopting the (extended e/e link)

as formulated in the previous section. It is conventional wisdom that a

solution to the measurement problem can always be provided if the eigenstate–

eigenvalue link is denied, in particular its necessary part.7 But now note that

5 Thus Fine and Brown’s condition is weaker than (TPC): it does not imply that (I�A)-

distinguishability entails O-distinguishability. It is only a necessary but not sufficient con-

dition on measurements.
6 It is in addition important to emphasise that i) selections are not generally committed to (TPC),

and ii) even those selections that obey (TPC) are able to account for a very large class of

approximate non-ideal measurements. See the discussion in Section 6.
7 That is, at any rate, how modal interpretations solve the measurement problem. See, for

illustration, the essays in Dieks and Vermaas ([1998]).
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(OOC) follows from (extended e/e link), together with the fact that quantum

measurements have outcomes (i.e. that they have one particular outcome or

other). A stronger condition would follow from (basic e/e link). However

(OOC) is strong enough for the insolubility proof: it is possible to escape

it, and hence solve the measurement problem, by denying (extended e/e link),

and thus denying that (OOC) is required for measurements to have outcomes.

Hence (extended e/e link) preserves conventional wisdom while being the

weaker condition. This allows us to characterise a wider class of interpreta-

tions that are committed to a measurement problem, and a narrower and more

precise class of those that are able to evade it by denying the semantic rule for

the ascription of values to observables.

4 A defence of the insolubility proof

4.1 Stein’s critique

Howard Stein ([1997]) provides an interesting critique of the insolubility

proof. He begins by deriving a lemma in the theory of Hilbert spaces that

has as a direct application a version of the insolubility proof (for the details,

see Appendix 3). This lemma, he argues, is true given the ignorance inter-

pretation of mixtures, but does not necessarily follow without that interpreta-

tion. And, he continues, the ignorance interpretation of mixtures presupposes

the wrong picture of quantum states. A quantum mixed state represented as a

statistical operator is not an ensemble of pure states, but rather an assignment

of probabilities to values of dynamical variables, i.e. to observables of the

system. Although in some circumstances the ignorance interpretation may be

given, it is not generally called for. The statistical operator formalism does not

invite the ignorance interpretation and, Stein concludes, the insolubility proof

cannot constitute an accurate representation of the measurement problem.

Throughout this paper I will adopt Stein’s understanding of quantum states

as an assignment of probabilities to the possible values of a system’s dynamic

quantity. I will refer to it as the standard understanding of quantum states, as I

believe it to be established in the literature. There are two reasons, however,

why I want to resist Stein’s conclusion. The first is that the ignorance inter-

pretation of mixtures is not strictly required for the formulation of the

insolubility proof: the proof may be a valid representation of the measurement

problem even if the ignorance interpretation is not appropriate. The second is

that the types of idealisations that go into the formulation of the insolubility

proof, which Stein’s critique may be taken to question, are also part and parcel

of the quantum theory of measurement, within which the measurement pro-

blem arises. The insolubility proof captures as much of the measurement

problem as there is to be captured.

226 Mauricio Suárez



4.2 Ignorance is not required

First, note, as a preliminary observation, that the insolubility proof can be

stated in a manner that respects the standard understanding of quantum

states, for the statements of conditions (OOC) and (TPC) given in the previous

section are prima facie perfectly consistent with that understanding of statis-

tical operators. These conditions are expressed not in terms of the pure states

that compose the relevant mixtures, but in terms of probability distributions

defined over the possible values.

I claim that the ignorance interpretation is not required for the insolubility

proof. (OOC) is a strictly weaker condition on the final state of the composite

than the ignorance interpretation. For suppose that the final state of the

composite is degenerate; then it possesses no unique representation in terms

of pure states. (OOC) is happy to accept this plurality of representations. By

contrast, the ignorance interpretation insists that only one among these

representations is physically meaningful—one which contains the pure state

that the system really is in, with the corresponding epistemic probability. But

that means that the ignorance interpretation does not and cannot be used to

motivate (OOC). Rather, as has already been emphasised, (OOC) is motivated

by the (extended e/e link), together with the requirement that quantum mea-

surements have outcomes and the standard understanding of quantum states.

Thus rejecting the ignorance interpretation cannot by itself suffice to explain

why (OOC) may fail. And it is (OOC), not the ignorance interpretation, that

figures as a premise in the insolubility proof.

There are, however, two important caveats to the above argument. The

first one is this: it is nonetheless the case that when the final state of the

composite is non-degenerate, (OOC) coincides with the ignorance interpre-

tation. In that particular case, there is only one spectral decomposition of

the system’s mixed state, and it is also true that only for a particular (pure)

eigenstate of the observable will the probability of any particular eigenvalue

be one. Perhaps this coincidence underlies Stein’s thought that the ignor-

ance interpretation is somehow involved. However, this coincidence cannot

provide an argument in favour of Stein’s conclusion, because in general (OOC)

cannot be justified merely by an appeal to the ignorance interpretation.

The second caveat to my argument against Stein’s conclusion cannot be

dismissed so lightly. It concerns the use in Fine and Brown’s insolubility

proof of a condition called Real Unitary Evolution (Brown [1986]). According

to this condition, the unitary evolution of a mixed state is given by the

unitary evolution of its component pure states. Suppose that Wo, Wa are

the statistical operators representing the initial states of the object system

and measuring device respectively. And suppose that Wo¼�ncn P[�n], and

Wa¼�mdm P[�m]. Brown states the principle of real unitary evolution as
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follows:

Real Unitary Evolution (RUE):

ÛUtðWo � WaÞÛU�1
t ¼ ÛUtð�ncn P½�n� � �mdm P½�m�ÞÛU�1

t

¼ �n;mcndmÛUtðP½�n� � P½�m�ÞÛU�1
t

¼ �n;mwnm P½ÛUtð�n��mÞ�

where wn;m ¼ cn � dm, 0 � wnm � 1 for all values of n, m:

The status of (RUE) has been a matter of some debate, but I think everyone

would agree that it is motivated by the ignorance interpretation. In introdu-

cing it explicitly, Brown wrote:

It should be clear, moreover, that the principle is an extremely natural

extension of the ignorance interpretation of mixtures, which as a rule is

postulated for instantaneous ensembles, to the case of ensembles of sys-

tems whose states are evolving over time according to the Schrödinger

equation. (Ibid., p. 860)

In fact (RUE) is logically entailed by the dynamical extension of the ignorance

interpretation. According to the ignorance interpretation, a mixed state

represents our subjective degree of ignorance of the (pure) state of a system.

Its dynamical extension will then state the following: any dynamical evolution

of the system that fails to provide us with additional information about the

initial state of the system must result in a final state that reflects our initial

uncertainty. In other words, the pure states must evolve unitarily and inde-

pendently, with coefficients cn, dn that are invariant under this evolution—and

that is indeed what (RUE) asserts. Conversely, (RUE) imposes exactly the

same condition on the time evolution of states that would be expected if the

dynamical extension were true. In a formal sense at least, (RUE) is equivalent

to the dynamical extension of the ignorance interpretation.

However, it does not seem to have been noticed that the insolubility proof

does not employ as strong a condition as (RUE), but rather:

Quasi-Real Unitary Evolution (QRUE):

ÛUtðWo � WaÞÛU�1
t ¼ ÛUtð�ncn P½�n� � �mdm P½�m�ÞÛU�1

t

¼ �n;mwnm ÛUtðP½�n� � P½�m�ÞÛU�1
t

¼ �n;mwnm P½ÛUtð�n��mÞ�

where 0 � wnm � 1 and wnm ¼ 1; but wnm need not equal cndm:

This condition is strong enough to generate the inconsistency between

(OOC), (TPC) and the Schrödinger equation.8 Crucially, it is not equivalent

8 I have made the use of (QRUE) explicit in my presentation of the insolubility proof in Appendix 2.

Brown ([1986]) made (RUE) explicit, but it is (QRUE) which is implicitly employed in Fine

([1970]). Stein ([1997]) invokes the commutativity between (I�A) and Û (Wo�Wa) Û�1 which
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to the dynamical extension of the ignorance interpretation. The latter entails

(RUE), which is a special case of (QRUE), but the dynamical extension is not

entailed by (QRUE). There are possible unitary interactions in which (QRUE)

holds but the ignorance interpretation (and (RUE)) are plainly false. For there

are possible choices of n, m for which (QRUE) is true, while the ignorance

interpretation and (RUE) are not. Thus (QRUE) is neither a natural extension

of the ignorance interpretation, nor is it motivated by it. What motivates

(QRUE) instead is its natural compatibility with the usual rule for the evolu-

tion of the spectral decomposition of mixed states, namely:

ÛUtðW0ÞÛU�1
t ¼ ÛUtð�nwnð0Þ PnÞÛU�1

t ¼ �wnðtÞÛUt PnÛU�1
t ¼ Wt

Hence, the ignorance interpretation of mixtures is neither an explicit premise

of the insolubility proof, nor is it logically entailed by any of its premises

((TPC), (OOC), (QRUE) and the Schrödinger dynamics).

4.3 The problem of quantum measurement is an idealisation

There is a further question about how appropriate the assumptions made by

the insolubility proof are for measurement interactions in general. I have

already expressed doubts that (TPC) is an appropriate necessary condition

for realistic models of actual measurement interactions. I now want to argue

that in the context of the usual tensor-product Hilbert space formalism these

assumptions are reasonable. As outside this context the question of a mea-

surement problem does not even arise, the measurement problem is reason-

ably captured by the insolubility proof.

I will take here an idealisation to be a description of a system which, for the

sake of presentation or ease of calculation, involves some assumptions that

are known to be false. Thus, what needs to be shown is i) that any false

assumptions that may be involved in (TPC), (OOC), (QRUE) or the use of

the Schrödinger equation also affect the quantum theory of measurement;

and ii) that without those assumptions, the theoretically-based intuition of a

measurement problem disappears.

(TPC) is idealised on at least two counts. First, it assumes that whether

interactions are measurements is an all-or-nothing affair that depends not on

the actual initial state of the system to be measured at a particular time, but on

all the possible states that the object may have had in accordance with the

theory. This is hardly satisfied by any real measurement we know. For

instance, in setting up a localisation measurement of the position of an electron

in the laboratory, we do not assume that the device should be able to discern a

he seems to think is logically equivalent to the ignorance interpretation of Û (Wo�Wa) Û�1.

Stein’s condition is indeed necessary and sufficient for (QRUE), and his proof is the closest to the

one in Appendix 2. But Stein’s condition is not sufficient, only necessary, for (RUE); and hence, in

my view, it is not logically equivalent to the ignorance interpretation.
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position outside the laboratory walls, even if it is theoretically possible that the

particle’s position be infinitely far away from us. All real measurement devices

are built in accordance with similar assumptions about the physically possible,

as opposed to the merely theoretically possible, states of the object system, on

account of the particular conditions at hand.9 So real measurement devices do

not strictly speaking fulfil (TPC). However, this idealisation has been a part of

the quantum theory of measurement from its inception; and it would be very

difficult to see how the measurement problem would arise at all in its absence.

For if we do not expect quantum theory to completely describe the physically

possible initial states of a system, we should hardly expect it to describe

completely the physically possible outcomes of a measurement; and that ex-

pectation is at the heart of the measurement problem.

The second count of idealisation against (TPC) is that it appears to require

measurements to be ideal in the technical sense of correlating one-to-one the

initial states of the object system with states of the composite at the end of the

interaction. However, many real measurements are not ideal in this sense.

Most measurement apparatuses make mistakes, and no matter how much we

may try to fine-tune our interaction Hamiltonian, we are likely in reality to

depart from perfect correlation.10 In Section 6 it is argued that, contrary to

this appearance, (TPC) is not committed to all measurements being ideal. On

the contrary, it is possible to capture a large variety of approximate non-ideal

measurements by means of (TPC). In fact (TPC) turns out to be as good a

theoretical guide as any for distinguishing those interactions for which a

measurement problem can arise from those interactions that it makes no sense

even to describe as measurements.

Let us now turn to (OOC). This is also idealised since it assumes that the

measuring device can only ‘point’ to the eigenvalue of the pointer position

observable which has probability one in the final state at the end of the

interaction. The same idealisation is built into the quantum theory of mea-

surement in the form of the (extended e/e link), which was anticipated by Von

Neumann’s original statement of (basic e/e link). It can of course be relaxed,

but only at the expense of introducing new rules for value-ascription into the

quantum theory of measurement. In addition, it is clear that without (OOC)

there is no measurement problem; for (OOC) captures precisely the intuition

that is at the heart of the problem, namely that any quantum measurement

9 To my knowledge Stein ([1972]) first voiced this concern.
10 The claim that real measurements are (almost) never ideal in this sense has become common lore

in recent philosophy of quantum mechanics, following Albert ([1992]), and Albert and Loewer

([1993]). There are surprisingly few sound arguments offered in favour of this common lore; but

it is certainly the case that at least some real measurements (destructive measurements) are not

ideal in this technical sense. See Suárez ([1996]) and Del Seta and Suárez ([1999]) for a discussion.

230 Mauricio Suárez



ought to yield an outcome; that is, some outcome or other. Without that

intuition, and without the (extended e/e link) to back it up, there is no problem

of measurement.

What about (QRUE)? Is it also idealised, and in what respect? (QRUE)

assumes that a mixture of pure states of the composite (objectþ apparatus)

evolves into a mixture of the unitarily evolved pure states of the composite. In

order to find out whether and how this assumption is idealised, we need to ask

the following question: Under what real-life conditions do we expect (QRUE)

to fail? We do, without doubt, in cases of environmentally-induced decoher-

ence, for in such cases, the environment induces a non-unitary evolution on

the states of the measuring device that is inconsistent with (QRUE). This

phenomenon is well known to be ubiquitous in practice; so (QRUE) is indeed

strongly idealised. More precisely, (QRUE) assumes that the ‘composite’

system formed by the quantum objects and the measuring device is isolated

from the rest of the universe, which is almost always false in the real world.

Yet, notice that the same idealisation is also present in the quantum theory of

measurement, which takes the interaction between the object and the appa-

ratus to be unitary, at least prior to the occurrence of an outcome. This

assumption has in the past been contested, and is often rightly repudiated

in some realistic accounts of measurement, for instance those offered by

decoherence and quantum-state diffusion approaches.11 And although not

everyone agrees that the measurement problem is solved completely in these

approaches, it is generally agreed that describing the further interaction of the

measuring device with its environment takes us closer to a solution of the

problem.

Finally, the Schrödinger equation is idealised because it assumes that all quan-

tum systems, not only composite systems involving measuring devices, are closed

systems. It assumes that the quantum Hamiltonian can transform pure states into

pure states, ormixtures intomixtures,but nevera pure state intoa mixtureor vice-

versa. But this again is a pre-requisite for a problem of measurement. For there

wouldbenoproblematall ifweassumed,asforinstanceVonNeumannwasforced

to assume, that at some point in the measurement process a pure-state quantum

mechanically evolves into a mixture.

To conclude, the idealising assumptions which pervade the premises of the

insolubility proof are concomitant with the quantum theory of measurement

itself. The insolubility proof does not trade in a description of the measurement

process any more idealised, or any less realistic, than the one offered by

the quantum theory of measurement. And it is precisely these idealising

11 For decoherence approaches to measurement, see e.g. Zurek ([1993]). For the quantum state

diffusion approach, see e.g. Percival ([1999]).
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assumptions that account for our theoretically-driven intuition that there is

something problematic about quantum measurements. Without these idealising

assumptions the insolubility proof would be empty; but so would the measure-

ment problem itself.

5 Selections

I have argued that the insolubility proof, in particular Stein’s version, succeeds

in capturing the essence of the measurement problem. And in one particular

respect Stein’s version succeeds admirably. His lemma makes explicit the fact

that the measurement problem would not arise if the initial states of the system

were suitably restricted. For, as Stein writes, the lemma is valid ‘if for every

nonzero u 2 �, the commutativity condition [. . .] holds,’ where � is a vector

subspace of H, and thus includes all linear combinations of vectors already in

�. In particular, if the superpositions of eigenstates of the object included in �

were discounted, the insolubility proof could not be formulated. The proof

does not apply to a space of possible states that excludes arbitrary linear

combinations of states already in the space, in other words a space of states

that is not a vector subspace. This fact conspicuously points to an appropriate

solution to the problem in terms of selections. The rest of this paper is devoted

to a discussion of the selections approach.

5.1 Representing dispositional properties

I shall defend the following claim: A selection is an interaction designed to test

a particular disposition of a quantum system. Among the dispositional prop-

erties I include those responsible for values of position, momentum, spin and

angular momentum. In a selection, the pointer position interacts only with the

property of the system that is under test.

However, the possibility of selections is not reflected in the formalism of the

quantum theory of measurement, which insists on modelling any interaction

process by feeding in the full initial quantum state of the object system. On the

standard understanding, a quantum state is an array of probability distribu-

tions over the eigenvalues of all the observables of the system. Thus according

to the quantum theory of measurement, any interaction whatsoever with a

quantum object is, ipso facto, an interaction with all the properties of the

object—and hence, on this definition, not a selection.

Something must be added to the formalism to represent selections. We may

begin by noting that the quantum state  defines a distinct probability dis-

tribution for each observable. Hence  is an economical representation of all

the properties of the system. We may thus wonder if there is a more precise
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representation, for any quantum system, of each of its properties, individually

taken. Suppose that there is a representation W(O) of precisely the property O

of a system in state  . The least that we would expect W(O) to satisfy is the

following consistency condition: W(O) must define exactly the same prob-

ability distribution over the eigenvalues of O as does  . Thus our desideratum

on any more precise representation W(O) of the property O of a system in state

 amounts to the claim that W(O) be O-indistinguishable from  .

It is indeed possible in general to find a more precise representation of each

property of a quantum system in state  . Consider the following definition of

the equivalence class of states relative to a particular observable Q:

Q-equivalence class : W0 2 ½W�Q if and only if W0 � Q W:

Suppose that O is a (discrete and not maximally degenerate) observable of

the system with spectral decomposition given by �n�nPn, where Pn¼P[�n] ¼
j�nih�nj. We can construct the standard representative W(O) of the equi-

valence class [W]O as follows:

WðOÞ ¼ �nTrð PnÞWn, where Wn ¼ Pn=TrðPnÞ

It is now possible to make the following claim: for a given system in a state  ,

and a given observable O of this system, if  belongs to the equivalence class

[W]O, then W(O) represents precisely the property O of the system.12

A selection of observable O of a specific quantum system in state  is then a

quantum mechanical interaction (of e.g. the pointer position observable of a

measuring device) with the specific property of the system represented by

W(O).

5.2 Selections solve the measurement problem

All proposed solutions to the measurement problem so far have tried to

tinker formally with the final state of the composite, by replacing the super-

position predicted by the Schrödinger equation with an appropriate mixture

that will obey OCC. Collapse interpretations do this more or less explicitly,

either by introducing an additional dynamics that will yield the appropriate

mixture, or (as is the case, for instance, in quantum state diffusion) by

replacing the Schrödinger dynamics altogether. No-collapse interpretations

do this implicitly. Thus, Everett’s ‘relative state’ is just the mixture that

12 In Section 7, I ask the question: what kind of properties must these be to be so representable?
There is no analogue of this type of representation in classical mechanics. In the classical case,

W(O) would simply be the value of a particular dynamical quantity of a system, as extracted

from its state; and such extraction is a completely trivial operation. But, as has been emphasised,

a quantum state is not to be interpreted à la classical mechanics as assignments of actually

possessed properties and their values, but rather as a mere assignment of probabilities.
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corresponds to a system in an entangled composite when the state of the rest

of the universe is a particular eigenstate. The modal interpretation (in its

Kochen-Healey-Dieks version) takes the final state of the composite yielded

by the Schrödinger equation (the ‘dynamical state’) to be equivalent to a

mixture (‘the value state’) for the purposes of ascription of values to ob-

servables. And Bohmian mechanics advises us to regard every superposition

as epistemically reducible to an ignorance interpretable mixture of eigenstates

of position.13

Now let us suppose that quantum measurements are quantum selections: in

a measurement, the pointer position property of the device interacts with only

one property of the system, represented by Wo(O). So we must feed this state

into the formal representation of the interaction, instead of Wo. From the

formal point of view of the quantum theory of measurement, this amounts to

‘tinkering’ with the initial state. Fine14 employed this fact to solve the mea-

surement problem: if the initial state that feeds into the Schrödinger equation

could be somehow construed as the appropriate mixture over the eigenstates

of the object observable, the final state of the composite resulting from

Schrödinger evolution would satisfy (TPC) and (OOC).15

To see this, let us return to the discussion of measurement interactions, with

the definitions of Q-equivalence and the standard representative in mind. A

quantum object in state Wo interacts with an apparatus initially in state Wa.

We are interested in the property O of the object, represented by the Hermitian

operator O with eigenvalues �i and eigenvectors �i. The pointer position

observable of the apparatus is represented by the Hermitian operator

I�A, with eigenvalues �ni and eigenvectors �ni (corresponding to the eigen-

values �n and eigenvectors �m of A). The insolubility proof of the measure-

ment problem shows that no unitary interaction can be set up where the

probability distribution laid out by Wo over the �i eigenvalues of O is matched

by that defined by the final state of the composite over the �in eigenstates of the

pointer position observable, as long as we allow that the initial state of the system

may be any arbitrary state—including, crucially, superpositions of the �i.

However, we are supposing that in a measurement the pointer position

property, represented by Wa(A), interacts only with the property of the system

represented by Wo(O).16 We are then able to model the interaction of a system

in a state Wo by a measuring device in state Wa as a selection of the property of

13 For a description of these, and other interpretations of quantum mechanics, see e.g. Albert

([1992]) or Dickson ([1998]).
14 Fine ([1987]), ([1993]).
15 This may suggest that the existence of selections is a logical consequence of the insolubility proof,

since they are the only interpretation of quantum mechanics that can get around the proof

without relinquishing any of the proof ’s premises. In Section 5.3, I argue against this suggestion.
16 For the sake of simplicity, and without loss of generality, I assume throughout that Wa(A)¼Wa.
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the system represented by Wo(O), as follows:

WoðOÞ � Wa ! ÛUtðWoðOÞ � WaÞÛU�1
t

¼ ÛUtð�nTrðWoPnÞWn � �mwm P½�m�ÞÛU�1
t

¼ �nm�nmðtÞÛUtðWn � P½�m�ÞÛU�1
t

¼ �nm�nmðtÞÛUtðP½�n� � P½�m�ÞÛU�1
t

where �nmð0Þ ¼ �nmTrðWoPnÞwm:

It is now easy to see that as long as this selection satisfies (QRUE), the

pointer position observable will take values in the final state of the composite,

in accordance with (extended e/e link). For simplicity, consider the ideal, non-

disturbing, (QRUE)-obeying interaction Ut:

ÛUtð�n � �mÞ ¼ �n � �n

This interaction has the following effect:

ÛUtðPn � P½�m�ÞÛU�1
t ¼ ÛUtðP½�n��m�ÞÛU�1

t ¼ P½ÛUð�n��mÞ� ¼ P½�n��n� ¼ P½�nn�

where �nn is an eigenvector of (I�A) with eigenvalue �nn. The final state of

the composite resulting from this selection is then:

Wf
oþa ¼ �nm�nmðtÞP½�nn�

This is a mixture over pure states, namely projectors onto the eigenspaces of

(I�A). Hence each P[�nn] ascribes some value to (I�A) with probability one

and, according to (extended e/e link), the pointer position observable takes a

value in the state Wf
oþa.

5.3 Selections and ignorance

Does the ignorance interpretation play a role in the solution to the measure-

ment problem offered by selections? Perhaps contrary to appearances, it plays

no role.

I begin by drawing a distinction between selective interactions and selec-

tions. Fine defined selective interactions as unitary interactions with the stan-

dard representative of a system that obeyed (TPC) and (QRUE). He was then

able to show that such selective interactions solved the measurement problem,

for he was able to demonstrate that the final state of the composite resulting

from any such selection obeys (OOC). I have defined selections, more gen-

erally, to be unitary interactions designed to test a particular property of a

system represented by a standard representative. There is no reason in

principle why a selection should obey (TPC), or (QRUE). And thus there

is no reason in principle why a selection should yield a final state of the
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composite that satisfies (OOC). Even in the case of selective interactions,

which obey (QRUE), there is no entitlement to the ignorance interpretation,

for recall from Section 4 that (QRUE) is not sufficient for the ignorance

interpretation.

This result has two important consequences. First, it shows why it is a

mistake to think of selections in general either as an artefact of the inso-

lubility proof, or as a logical consequence of this proof. Selections turn out

to be a more general class of interactions, which include selective interac-

tions as a subset. And although the insolubility proof shows that selections

can solve the measurement problem, and thus provides one reason in favour

of selections, nothing like a logical demonstration of selections from the

premises of the insolubility proof is forthcoming. There is no reason in

principle why all selections should obey (QRUE). Even if some selections

(selective interactions) obey (QRUE) and get around the insolubility proof,

this is hardly the basis for a deduction of this particular set of selections

because, as argued in Section 4, (QRUE) is itself highly idealised and em-

pirically weakly motivated. Additional empirical reasons in favour of the

existence of selections must be sought, and that is what I do in Sections 6

and 7 of this paper.

The second consequence requires some preliminary discussion. One may be

tempted by the following argument to claim that selections make the mistake

of ascribing the wrong state to quantum systems that enter into interaction

with measuring devices. Consider the final state of a selective interaction:

Wf
oþa ¼ �nm�nmðtÞP½�nn�

The probabilities �nm are the time-evolutions of the product of the probabil-

ities of the eigenvalues �n in the initial state Wo(O) of the object system on the

one hand, and of the probabilities of �m in the initial state Wa of the apparatus

on the other. Now, suppose that in a selection we were required to give the

ignorance interpretation to the final state of the composite, and to understand

the probabilities �nm as subjective probabilities describing our incomplete

knowledge of the ‘true’ state. And suppose in addition that �nm is constant

in time, i.e. �nm(t)¼ �nm (0)¼�nmTr(WoPn)wm. This would commit us to

understanding Tr(WoPn), and wm as subjective probabilities. It follows that

we are required to give the ignorance interpretation to the initial mixed state of

the apparatus Wa, and to the standard representative of the object system

Wo(O).

It is possible to do so in spite of the argument against the ignorance inter-

pretation of improper mixtures in Section 2 of this paper, because neither Wa

nor Wo(O) is in general improper. But giving the ignorance interpretation

to Wo(O) raises a puzzle. Recall that Wo(O) is a mixture over Wn states. In

giving an ignorance interpretation to it, we are claiming that the true state
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of the object system at the beginning of the interaction is really one of the

states Wn with the prescribed probabilities. But the initial state of the system

is Wo! This may not even be a mixed state, and it will generally be very

different from any of the Wn. Moreover, although the mixture Wo(O) is,

by construction, in Wo’s equivalence class, neither of the pure states Wn that

appear in the decomposition of Wo(O) is.

Considering formally the simple case of a Schrödinger cat-like measurement

helps to make the point more clearly. We are invited to consider a two-

dimensional observable O with eigenstates �1 and �2 and corresponding

eigenvalues �1 and �2 respectively. We are then asked to consider three

O-distinguishable states, �1, �2 and �3, where �3 is the linear combination:

a1�1þ a2�2. Given �3 and that the spectral decomposition of O¼�1P[�1]þ
�2P[�2], we can construct the standard representative of �3’s O-equivalence

class, namely the mixed state: Wo(O)¼ ja1j2P[�1]þ ja2j2P[�2]. The argument

above entails that in order to solve the Schrödinger cat paradox by means

of a selection, we need to give the ignorance interpretation to Wo(O). This

amounts to the claim that the system really is in state �1 or �2, although we

do not know which one exactly. And this contradicts our prior knowledge that

the state of the system is �3 instead. Surely we are not here being asked to

entertain the long-discredited ignorance interpretation of superpositions!

The argument is fallacious. It incorrectly assumes that the ignorance inter-

pretation of the final state of the composite is required to solve the measure-

ment problem, and that selections are in the business of providing this by

advancing a subjective interpretation of the probabilities. But in light of the

previous discussion, i) the measurement problem does not call for the ignor-

ance interpretation of mixtures, proper or improper; ii) the concept of a

selection in no way involves the ignorance interpretation; and iii) even those

selections that obey (QRUE) and defeat the insolubility proof do not require

the ignorance interpretation—in fact they may be inconsistent with it, for the

probabilities �nm may evolve in time.

More to the point, the argument misconstrues the selections approach in two

different ways. Firstly, on the account of selections developed in this paper,

Wo(O) represents not the full state of the system but the state of the

O property—taken on its own. Secondly, although Wo(O) is a proper mixture

(it does not result from the application of the axiom of reduction to a larger

composite, but from the preparation procedure that generated Wo), it is not an

ignorance-interpretable one.

I develop these claims in greater detail in Section 7.3. For now it suffices to

point out that to suggest that quantum measurements are quantum selections

is not to suggest that there are no systems in superpositions; nor is it to suggest

that the actual initial state of a system that is just about to measured is the

mixture Wo(O) instead of Wo. That would not agree with experience in cases
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where Wo is a pure-state superposition: it is always possible to run an inter-

ference experiment on the system which can only be modelled correctly by

means of the superposition. The suggestion is rather that a system in state Wo

has a large number of propensities, each associated with a quantum obser-

vable O and represented by Wo(O); and that measurements of the system are

selections because measuring devices interact with only one of these propen-

sities at a time.

6 Non-ideal selections

In Section 7.3 it will be argued that the selections approach can be construed

as a peculiar variant of modal interpretation. Perhaps the best-known modal

interpretation is the so-called Kochen-Healey-Dieks (KHD) interpretation. A

widely discussed objection to this interpretation is that it cannot account for

non-ideal measurements.17 In this section, I argue that selections have one

important advantage over KHD, namely that they can account for non-ideal

measurements naturally. The results of this section thus serve two important

purposes. First they provide empirical arguments for the existence of selec-

tions, and second they demonstrate one way in which selections are superior to

their competitor no-collapse interpretations.

6.1 No-collapse interpretations and non-ideal measurements

In their most elementary version, KHD interpretations ascribe values to the O

property of the object system and to the pointer position observable of the

measuring device if and only if the final state of the composite is in a biortho-

normal decomposition form:

j i ¼ �icij�ii � j�ii

However, note that this is a small subset of the set of all possible final

states:

j i ¼ �ijcijj�ii � j�ji

in which it is typically not possible to predict perfect correlation between the

values of the pointer position observable and the object observable. Ideal

interaction Hamiltonians yield final states in the biorthonormal decomposi-

tion form; but for the larger class of Hamiltonians that govern non-ideal

interactions, the modal interpretation cannot ascribe values in the final state

to the pointer position observable.

17 See Albert ([1992]); Albert and Loewer ([1991], [1993]).
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6.2 Exact and approximate measurements

The following terminology will be adopted: an exact measurement may only

result from an ideal interaction while an approximate measurement may result

from a non-ideal one. Let us begin by characterising these two forms of

interaction:

Ideal Interaction: �ici�i � �o ! �idi�i � �i

Non-ideal Interaction: �ici�i � �o ! �ijdij�i � �j

On the account of measurement adopted in this paper, an ideal interaction is a

measurement of O by I�A only if it obeys (TPC): di¼ ci. We may then define

an exact measurement as an ideal interaction that obeys (TPC) and correlates

possible values of the relevant property of the object system with possible

values of the pointer. We may also define the notions of �-measurement and

approximate measurement as follows:

�-measurement : A non-ideal interaction is an �-measurement if jdijj25 2,

if i 6¼ j, where 05 2 51=2:

Approximate measurement (Shimony [1974]): An �-measurement is an appro-

ximate measurement if jdijj 2� 0, if i 6¼ j.

In general, 2-measurements are not proper measurements of the state of the

object system. Most 2-measurements are not (TPC)-obeying, and cannot be

used to reliably infer the state of the object system from the experimental

outcome. Instead, these measurements generally test for the probabilities of

states of the object system given the measurement outcome, and may be used

to reliably infer conditional probabilities of states on outcomes.

Approximate measurements are a special kind of �-measurements which

approximate ideal measurements, and are thus approximately (TPC)-obeying.

These are proper measurements of the states of the object, as they allow us to

infer the states of the object system to a high approximation.

6.3 Selections for non-ideal interactions

I claim that the selections approach accounts for precisely that subset of

�-measurements that are proper measurements of the initial state of the object

system (as opposed to measurements of conditional probabilities) as well as

for all exact and approximate measurements. In other words, selections are

not only able to account for non-ideal measurements in general; they also

provide a useful wedge to separate very precisely non-ideal interactions from

actual measurements.

In the previous sub-section, I showed how any exact measurement may

be modelled as an exact selection. Here, I show how selections may
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model i) �-measurements of the initial state of the object system that obey

(TPC), and ii) approximate measurements.

A non-ideal selection of a disposition O of a quantum system is a non-ideal

interaction of the pointer position property of a measuring device with the O

disposition of the system as represented by the standard representative

Wo(O):

�ijcij2P½�i� � P½�o� ! �ijjdijj2P½�i��j�

Now it is easy to show that any non-ideal selection obeys (TPC) if and only if it

obeys the following general condition:

8j �ijdijj2 ¼ jcjj2

But this general condition is also required for �-measurements to obey (TPC).

We conclude that all �-measurements that obey (TPC) can be modelled as

non-ideal selections that obey the general condition.

As an illustration, a two dimensional selection that constitutes an

�-measurement is given by the following three expressions:

1. ðjc1j2P½�1� þ jc2j2P½�2�Þ �P½�0� !
jd11j2P½�1��1� þ jd12j2P½�1��2� þ jd21j2P½�2��1� þ jd22j2P½�2��2�

2. jd11j2 þ jd21j2 ¼ jc1j2

3. jd12j2 þ jd22j2 ¼ jc2j2

6.4 Approximate selections

Let us now turn to approximate measurements. These may be characterised as

selections by means of the general condition:

8j �ijdijj2 � jcjj2

However, these selections do not strictly obey (TPC), so we may question

whether they are measurements at all. We may address the worry by inde-

pendently developing a fully-fledged account of approximate selections, as

follows:18

Approximate Selection: An approximate selection of the O property of a

system in a pure state �n is a selection of the O property of a system in

the mixed state �n that approximates to �n, where �n approximates to �n if

�n¼�mwn
mP[�m], and wn

n� 1.

18 The account that follows was developed in conversations with Arthur Fine.
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An approximate measurement of observable O¼�ncn�n on a system in the

state Wo¼�ncn�n can be modelled as an approximate selection: substitute Wo

with the standard representative of its O-equivalence class, namely

Wo(O)¼�njcnj2P[�n]. We may substitute each P[�n] with the mixed state �n,

which approximates to it to yield: �njcnj2�m wn
mP[�m]. We may now run an

ideal selection of the O property of this state:

�n;mjcnj2 wn
mP½�m� � P½�o� ! �n;mjcnj2 wn

mP½Uð�m��oÞ�

¼ �n;mjcnj2 wn
mP½�m��m�

It is easy to check that �n,mjcnj2wn
m P[U(�m� �m)]��njcnj2 P[U(�n� �n)].

In words, the state that results from an approximate selection approximates

to the final state of the exact measurement given by an ideal (TPC)-obeying

selection. This shows that it is legitimate to model approximate measurements

by means of approximate selections.

6.5 Implications for ignorance

In Sections 5 and 6 it has been argued that selections do not in general need to

obey (TPC) or (QRUE), and in Section 4 I showed that (RUE)—and the

ignorance interpretation—might fail even when (QRUE) holds. So selections

are not one but two steps away from the ignorance interpretation. And indeed

it is easy to show that (RUE) fails in i) non-ideal selections that obey (TPC),

such as proper 	-measurements; and in ii) non-(TPC)-obeying selections, such

as approximate measurements. On the other hand, it is also easy to show that

the special kind of ideal selections that do obey (TPC) and (QRUE), such as

exact measurements, automatically obey (RUE). The requirement that the

probability distribution be matched is, in the case of exact measurements,

enough to keep fixed the values of the probabilistic coefficients. This result

strengthens the case for the dispensability of (RUE) in the insolubility

proofs advanced in Section 4 for it shows that (TPC) and (QRUE) together

already do some of the work for which (RUE) has been thought to be

necessary.19

7 Selective interactions test quantum propensities

In the final section, I turn to interpretational issues. How can we understand

selections? And why are measurements selections? I first critically address the

19 Del Seta ([1998]) gives a different argument for the dispensability of (RUE).
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answer to these questions given by Fine himself, and then provide my own

account in terms of dispositions.

7.1 Equivalence classes as physical ‘aspects’: a critique

Fine’s thought was that some interactions are ‘selective’ in the sense that they

respond only to a certain aspect of the system. For every property of a

quantum system originally in a superposition, there is a corresponding mixed

state that is probabilistically equivalent (for that property) to the superposi-

tion. For instance, a system in a superposition of E-eigenstates  ¼�civi is

probabilistically indistinguishable, as regards E, from a system in the mixed

state W¼�jcij2P[vi]
. An interaction is selective if it has been set up in order to

find out about this particular E aspect of the system and no other. In model-

ling this selective interaction, the mixed state may be used, for the super-

position is not a precise enough representation of this and only this aspect

of the system. Thus Fine writes:

The basic proposal, then, is to regard the measurement of an observable E

on a system in state  as a measurement interaction that selects the aspect

of the system corresponding to the probability distribution for E that is

determined by state  . ([1992], p. 126)

Although I agree with Fine’s contention that selections can solve the

measurement problem, I disagree with his interpretation of selections as mea-

surements of aspects of physical systems. Fine’s interpretation contains coun-

terintuitive elements, and provides a weak motivation for the existence of

selections. His suggestion is that we interpret quantum systems in superposi-

tions (regardless of whether individual particles or entangled sets of particles)

as made up of smaller subsystems. He writes:

My exploration starts out from the idea that some interactions are selec-

tive. They do not actually involve the whole system, only some physical

subsystem. Thus the interaction formalism ought not be applied to the

state of the whole system, only a representative of the subsystem engaged

in the interaction. ([1987], p. 502)

Fine is here reasoning as follows: a system in a mixture has no ‘subsystems’.

Hence in interacting with it, a measurement device interacts with the whole

system. But, as the system is in a mixture, some outcome will result. By

contrast, a system (even if a single particle) in a superposition is made up

of several ‘subsystems’. In an interference experiment, such as a two-slit

experiment, the device interacts with the entire system, or with all the sub-

sytems at once, and this explains why interference terms occur. In a measure-

ment interaction, however, the measuring device will interact only with an

individual subsystem. A ‘selective interaction’ then takes place, and this

explains why a precise outcome results with a certain probability.
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However, the suggestion that any system in a superposition is made up of

several ‘subsystems’ is counterintuitive from an ontological point of view. For

suppose that the system is a single particle. The claim that the particle is

composed of further ‘subsystems’ corresponding to each standard represen-

tative is essentially nothing but the claim that the particle is composed of

further (smaller?) particles, each of them in a particular quantum state. This

brings about a bizarre ontology and leaves us lacking in any explanation

for the curious fact that in an interference experiment all the subsystems

are interacted with, but not in a measurement.

Suppose, on the other hand, that the initial superposition is a representation

of the entangled state of two or more particles. For illustration, consider an

EPR pair of particles (1 and 2) in a singlet state of spin ‘up’ and spin ‘down’

along the x direction:

 ¼ ð1=p2Þ jupxi1 jdownxi2 � ð1=p2Þ jdownxi1 jupxi2

The suggestion that this superposition represents a system made up of further

subsystems is even more counterintuitive, for while there is now an unambig-

uous ontological prescription for individuating these subsystems, it disagrees

with Fine’s prescription. Fine prescribes the standard representatives for each

of the ‘subsystems’:

WðxÞ ¼ 1
2

P½up;down�ðxÞ þ 1
2

P½down;up�ðxÞ,
WðyÞ ¼ 1

2
P½up;down�ðyÞ þ 1

2
P½down;up�ðyÞ, etc:

However, W(x), W(y) represent distinct properties of the composite system

of particles 1 and 2, and cannot be interpreted as states of each of the particles,

individually taken. Even if these problems could be solved, it is difficult to see

how Fine’s prescription may constitute a physical motivation for selections.

There is no independent reason why interacting with a ‘subsystem’ will yield

an outcome while interacting with a whole system will not. We certainly do not

have an analogue of this in classical physical theories. (In classical mechanics,

for instance, we typically assume that a gravitational interaction with a mas-

sive object designed to measure its weight will result in an outcome even if the

object is constituted by smaller particles. In electrodynamics, measurements of

the charge of large conductors give outcomes, even if conductors are made

up of smaller, equally charged, parts.) Fine’s use of the system/subsystem

distinction is sui generis, and specifically tailored for quantum mechanics.

I believe that these are definite objections to Fine’s interpretation of selec-

tions. The basic problem seems to be that Fine’s interpretation constitutes a

return to an unacceptable understanding of a quantum state as describing a

complete set of actually possessed properties of a quantum system. On this

understanding, each standard representative must represent a complete set of

actually possessed properties of something, which might be (mis)leading Fine
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into ‘subsystem’ speech. A better alternative, consistent with the standard

understanding of quantum states, is that there is only one system (which

may well be a composite), with each standard representative representing a

different dispositional property of that system.20

7.2 Quantum dispositions

I defend the view that a selection is an interaction of the pointer position

observable of a measurement device with a dispositional property of a quan-

tum object. Each dispositional property is displayed under the right test

conditions as a chance distribution, represented by the corresponding stan-

dard representative. Hence, these properties are propensities in the sense of

Mellor ([1974]).

On this view, quantum entities do not have further constituent parts or

‘subsystems’, but they possess dispositional properties.21 An electron, for

instance, possesses a momentum-propensity (let us call it ‘momentum’), which

is displayed only in the appropriate selection; but the electron typically lacks a

specific value of momentum (its wavefunction will rarely be sufficiently peaked

in momentum space). The possession of ‘momentum’ by the electron is

‘unconditional’, in the terminology of Martin ([1994]) and Mumford

([1998], p. 21): the electron possesses it in the actual world, just like any

ordinary object possesses any of its categorical properties. This is perfectly

consistent with the electron never in its lifetime acquiring a specific value of

momentum, for in the absence of the appropriate selection a propensity may

never display itself, or become manifest, just as a fragile glass may never break.

20 Fine is certainly aware of the standard understanding of quantum states. I am at a loss, however,

as to how else to interpret the passages quoted above. Perhaps in spirit, if not in letter, Fine’s

interpretation is closer to a propensity interpretation than it appears.
21 These are similar but not identical to Healey’s dispositional probabilities (Healey [1989],

pp. 54–5). Like Healey, I take it that the manifestation of a quantum disposition is

essentially probabilistic, because the application of Born’s rule does not typically yield

precise values, but precise probabilities for values. I go further than Healey in ascribing a

property (‘momentum’, ‘position’, ‘spin’, etc) over and above the probability distribution

that is manifested; this property is responsible for the distribution in question, and can be

ascribed to the system even when the system has no actual value. One could instead seek to

ascribe two different properties: ‘spin’ would then be the property that obtains when and only

when a value of spin obtains, while (let us call it) ‘spinable’ would be the dispositional property

that obtains regardless. ‘Spinable’ would be analogous to the dispositional ‘fragility’, and ‘spin’

to the categorical ‘breaks’: The possession of ‘spinable’ would explain the occurrence of ‘spin’,

but the dispositional property would not be reducible to the categorical. Some distinction of this

kind is desirable for a correct conceptual analysis of dispositional ascriptions but, for the

purposes of this paper at least, there is no point in complicating the ontology unnecessarily.

It is simpler to work with just one dispositional property (‘spin’) which obtains always,

regardless of whether it is manifested. I want to thank an anonymous referee for pointing

out that my view is consistent with Mellor’s ([1974]) theory of propensities. Indeed the

success of selections in solving the measurement problem can be taken as evidence that the

fundamental properties of nature are dispositional, thus vindicating Mellor’s thought that it

may be dispositions ‘all the way down’.
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Hence I am adopting a sufficiently robust sense of propensities, which takes

them to be possessed by systems even when the test conditions required for

their manifestation fail to obtain.22

This view of quantum entities as endowed with irreducible propensities,23

provides us with an extremely natural way to understand selections, and their

solution to the measurement problem. A measurement is a (QRUE)-, (OOC)-

and (TPC)-obeying selection between the pointer position observable of the

measuring device and one of a particle’s propensities, an approximately

(TPC)-obeying selection in the case of approximate measurements.

Each propensity O of a quantum particle in a superposition Wo is repre-

sented by a mixed state Wo(O) with an associated chance distribution that

displays the propensity in question. Similarly the measurement device, initially

in state Wa, is endowed with a number of propensities, including a ‘pointer

position propensity’, each one represented by a mixed state Wa(A). It is the

hallmark of a measurement interaction that the pointer position will interact

solely with one particular propensity of the system.

There are partial analogues of this selective character of measurements in

both some classical physics measurements, and everyday sensory perception—

albeit in both cases the properties interacted with are categorical, or can be

suitably conceived as such. For example, measurements of the temperature of

a body are typically made by attaching highly sensitive sensors to certain parts

of the body. This constitutes an interaction between the measuring device and

the temperature of the object; other properties of the body (‘mass’, ‘density’,

‘electric charge’) are not typically thereby interacted with. In our observation

of the colour of a table, or our perception of the smoothness of its surface, we

interact only with those properties of the table that are responsible for those

features: the electromagnetic radiation that the table emits in one case; and the

roughness, porosity and texture of its surface, in the other case. The features in

question are ‘secondary properties’ and thus a result in part of these properties

of the object and in part of some of the properties of our sensory apparatus.

But in either case, the interaction is selective in a way analogous to a quantum

selection: in observing the colour, we do not interact with the porosity or

texture of the surface; and in detecting the smoothness of the surface, we do

not interact with the emitted radiation.

It is then a question of modelling quantum-mechanically the interaction

between the measuring device’s pointer position and the system’s propensity.

In a TPC-obeying measurement, the chance distribution displayed by O is

22 In agreement with the theories of Martin ([1994]), Mellor ([1974], [2000]) and Mumford ([1998]).
23 Irreducible at least in the sense, mentioned in footnote 21, that they are not reducible to their

manifestations. To the extent that there is an open question about realist hidden variable

theories, there is also an open question about whether these propensities are ultimately

reducible to some set of, yet unknown, categorical properties.
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straightforwardly displayed as the probability distribution of the pointer position

observable at the end of the interaction. In an approximate measurement, on the

other hand, given the nature of the interaction, the pointer position observable

won’tdisplayexactlythechancedistributiondisplayedbythesystem’spropensity,

but only approximately so. In either case, we can say that the probability distribu-

tion defined by Wo(O) is the chance distribution displayed by O.

If we set up a measurement interaction designed to measure a particular

propensity, we must take seriously the fact that only the property represented

by Wo(O) is interacted with. Otherwise there would be relevant physical facts

about the interaction that we would not take into account. The interaction

Hamiltonian is the same whatever propensity of the particle we measure. So

the standard quantum theory of measurement does not capture whatever

genuine physical differences (not merely differences in the experimenter’s

intentions) obtain between different experimental set-ups designed to measure

different dispositions of a quantum system. In that regard, the quantum

theory of measurement is incomplete. This is where selections step in: in

providing a separate representation of each of a system’s propensities, selec-

tions allow us to represent relevant physical facts.

Given that all the information about a particle’s propensities is encoded in

the set of mixed states that represent them, it may seem that the superposition

 is not needed.  has two main functions. First, it is an economical way to

represent all the relevant information at once. Instead of writing down a long

collection of mixtures to fully characterise a quantum system, I may just write

down  , from which it is always possible to derive the set of mixtures by

means of Fine’s algorithm for the standard representative. A second function

of  , which explains why it is not possible to dispense with it even in principle,

is related to the fact that propensities may interact with each other. In

quantum mechanics, unusually perhaps, they typically do: testing for a par-

ticular disposition of an object precludes us from testing another. No test for

the position disposition of a quantum system can be carried out simulta-

neously with a test for its momentum disposition. This type of information

(about which interactions preclude, or constrain, which others) is not en-

coded in the standard representatives. Only the state  of the system contains

this type of information. Hence if the experiment is set up to test the inter-

active character of the dispositions of some quantum particle (such as a two-

slit experiment), we must represent the state of the particle by means of the

superposition, which fully represents the interference aspect of the physical

interaction.24

24 This brings home nicely an added advantage of selections: unlike some interpretations of

quantum mechanics, selections do not appeal to the bizarre concept of a self-interacting

particle. It is sufficient to accept that each particle’s propensity may interact with other
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7.3 Selections as a propensity modal interpretation

A comparison with modal interpretations helps to clarify the role of the

different state-descriptions within the selections approach. In several respects,

the selections approach is a variant of the modal interpretation, albeit one

adjusted to make room for propensities, and which obeys (extended e/e link).

In van Fraassen’s terminology, modal interpretations ascribe two states to a

quantum system: the dynamical and the value state.25 The dynamical state fully

specifies how the system will evolve, whether in isolation or in interaction,

determining at all times both the range of possible values of each dynamical

quantity, and the probabilities for each value. Typically this role is played by

the quantum state  , evolving quantum-mechanically in accordance with the

Schrödinger equation. The value state, on the other hand, fully specifies which

observables of the system have values and what those values are at any time.

Modal interpretations often provide us with a rule that allows us to derive the

value state from the quantum state under certain circumstances.

On the selections approach, a system in a quantum state  has a number

of propensities, each represented by a standard representative Wo(O), which

describes not values actually possessed by property O of the system, but the

chance distribution that displays the system’s O propensity when O is mea-

sured. So Wo(O) is not the value state, but one element in what we may call the

propensity state. The propensity state is the set (typically of infinite cardinality)

of Wo(X) states, for all observables X of the system. This state represents the

non-actualised propensities of the system, and describes the chance distribu-

tions that would display them under appropriate measurements, but it cannot

be given the ignorance interpretation. We must bear this in mind when apply-

ing (extended e/e link).

The dynamical state, on the other hand, is, on the selections approach, a

complex entity, composed of the superposition  together with the collection

of each of the propensity states W(O) of the system. For an isolated system,

the evolution of  on its own determines the possible values of the system at

any later time, and their probabilities: no propensities are actualised. For a

system subject to a selection, however, the W(O) are indispensable, for their

evolution represents the evolution of the system’s O-propensity in a measure-

ment interaction set up to measure O.

propensities, in accordance with the uncertainty relations; hence a system’s ‘momentum’ cannot

be manifested, or actualised, simultaneously with its ‘position’, etc. The claim that different

properties of an entity may interact with each other is not controversial if those properties are

dispositional. For instance, the fragility of a glass interferes with its capacity to serve as liquid

container: these properties cannot be manifested simultaneously, for the manifestation of the

former (the breaking of the glass) causes the glass to lose possession of the latter. Hence the

selections approach also sheds light on the nature of the uncertainty relations.
25 van Fraassen ([1991], p. 275).
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The selections approach agrees with Healey’s interactive modal interpreta-

tion26 in emphasising the importance of physical interactions in the ascription

of values. So it pays at this stage to describe the situation from the point of

view of the composite system (objectþ apparatus). Suppose the apparatus is

set to measure the O propensity of the system: on the selections approach, the

propensity state of the composite is given by Wo(O)�Wa. The dynamical

state is given by the set { �Wa, Wo(O)�Wa}, but it is irrelevant in the

ascription of values. Application of (extended e/e link) to the propensity state

gives us the potential ‘values’ of the combined system, but we always have to

bear in mind that these ‘values’ have not been actualised yet! The only actually

possessed values at this stage are those that obtain from the application of

(extended e/e link) to the quantum state  �Wa, so we may want to refer to

this as the value state.

At the end of the interaction, the system’s dynamical state is given by the

unitarily evolved {U( �Wa), U(Wo(O)�Wa)U�1}. The propensity state is

given by W f
oþa ¼ U(Wo(O)�Wa)U�1, and so is the value state. Thus on the

selections approach, the evolution of the propensity state, which serves as the

basis for the ascription of properties to the system, is unitary. But, importantly,

the character of the ascription has changed: we start by ascribing potential

‘values’ of properties, and end up ascribing actual ones. If we concentrate

just on what I have here called value state, which records the actually possessed

values of the system, we can see that its evolution is not unitary.27 The non-

unitary change in the value state of the composite system precisely represents

the event of actualisation, or manifestation, of its O�A propensity. The system

goes from having a precise propensity, but no value, corresponding to the

O�A property, to having a particular value.

The O-propensity of the object system is displayed as a chance distribution

over the possible values of O which, given the TPC-obeying character of any

selection, is in turn precisely displayed as the chance distribution over the

possible values of I�A.28 But actual values of I�A can only be ascribed at

the end of the selection. This is precisely the main advantage of the propensity

interpretation of selections: it allows us to legitimately ascribe a property

(‘spin’) to a system, even though the system has not yet gained an actual value

of that property.

26 See Healey ([1989], p. 33).
27 Does this mean that we need to qualify the claim that selections solve the measurement problem

without relinquishing the Schrödinger equation? I do not think so: on any modal interpretation,

the Schrödinger equation does not describe the evolution of the specific values of the observables

of a particular system, but rather the evolution of the dynamical state. That is also true in the

selections approach.
28 This further illustrates why we should not fall for the ignorance interpretation of

U(Wo(O)�Wa)U�1. Otherwise, it would not be possible to distinguish between the value

and the dynamical states of the composite system at the end of the interaction.
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7.4 A comparison with Popper’s propensity interpretation

The account that I have been developing takes propensities to be central to the

interpretation of quantum mechanics, and to solving the measurement problem.

Appeal to quantum propensities is not new, and has a considerable pedigree.29

Perhaps the best-known proposal in this direction is that due to Karl Popper.

In this final section, I would like to briefly distinguish the propensity account

of selections from Popper’s propensity interpretation of the wave function.30

Popper’s interpretation defends, among others, the following five theses,

roughly described:

1. Propensities are real quantum properties instantiated in nature.

2. Propensities are not monadic properties of isolated quantum systems, but

relational properties of quantum entities in experimental set-ups. A one-

electron universe would lack any propensities.

3. Quantum theory is essentially a probabilistic theory, in the sense that it is a

theory about the probabilities that certain outcomes obtain in certain

experimental set-ups.

4. The quantum wavefunction, or state, is a description of a propensity wave

over the outcomes of an experimental set-up.

5. Providing an objective interpretation of the probabilities in quantum

mechanics in terms of propensities is sufficient to solve the philosophical

puzzles concerning quantum mechanics.

The propensity account of selections shares with Popper’s interpretation

an emphasis on the quantum probability distribution as the basis for

the ascription of dispositions. To the extent that a propensity can be

defined as probabilistically-quantified dispositional ascription, the account

I offer is also a propensity-based one. However, the similarities end there.

The account either denies or is non-committal about Popper’s theses 1–5.

The propensity account of selections remains neutral about Popper’s

thesis 1. It is only required that propensities may be ascribed even in the

absence of any actual (past, present or future) test. Beyond this requirement,

the account neither denies realism about propensity ascriptions nor requires it.

In particular, a conditional analysis of probabilistic dispositional properties is

acceptable as long as it accommodates this requirement.

Another difference concerns the nature of the quantum propensities them-

selves. Popper’s thesis 2 is false in my propensity account.31 Although the

29 Among the founding parents of quantum mechanics, Heisenberg (e.g. [1962]) was particularly

keen to understand quantum mechanics in terms of ‘potentialities’.
30 See Popper ([1982]).
31 Thesis 2 has been convincingly criticised by Peter Milne ([1985]), who shows that it leads to

incorrect predictions in the case of the two-slit experiment.
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propensities that I take quantum mechanics to ascribe to systems can only be

revealed by means of interactions with measuring devices designed to carry

out measurements of the appropriate observables, their ascription is fully

independent of the existence of such interactions. On my account, an electron

in a one-electron universe may be in state  , and thus possess all the propen-

sities described by the appropriate standard representatives.

Popper’s thesis 3 also turns out false: quantum mechanics is a theory about

quantum entities (including, certainly, subatomic particles) and their proper-

ties, not about probabilities. It just happens that the properties of quantum

entities are dispositional.

The propensity account of selections is not committed to Popper’s thesis 4.

On this account, the quantum wave function does not directly describe a

‘propensity wave’. Instead, the wave function is an economic tool to derive

the mixed standard representative states which describe probabilities of out-

comes. There is no need for a literal interpretation of the wavefunction as

representing a real ‘wave’.32

The account also denies the spirit, if not the letter, of Popper’s thesis 5.

Let us leave aside other paradoxical issues of quantum mechanics: merely

providing an interpretation of the calculus of probabilities cannot solve the

measurement problem, whether objective or subjective. It is necessary instead

to work hard on the formal representation of the physics. In particular

one has to i) introduce the notion of a selection and represent it formally;

ii) provide an interpretation of selections that supports the claim that all

measurements are selections; iii) show that the measurement problem only

arises in the context of assumptions (TPC), (QRUE), (OOC) and the

Schrödinger equation, and iv) show that there is no measurement problem

for those selections that obey (TPC), (QRUE), (OOC) and the Schrödinger

equation. It has been my intention in this paper to provide substantial

arguments for all these four claims, thus providing a background against

which these claims can be most fruitfully analysed and debated.
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Appendix 1: The interaction formalism

The quantum theory of measurement provides the tensor-product space form-

alism provided by the quantum theory of measurement to represent the inter-

action between an object system and a measuring device. Given two Hilbert

spaces, H1 and H2, we can always form the tensor-product Hilbert space

H1þ2¼H1�H2, with dim (H1�H2)¼dim (H1)�dim (H2). If {vi} is a basis

for H1 and {wj} is a basis for H2, then {vi�wj} is a basis for H1þ2. Similarly if

A is an observable defined on H1 with eigenvectors {vi} and eigenvalues {ai},

and B an observable on H2 with eigenvectors {wi} and eigenvalues {bj} then

A�B is an observable on H1þ2 with eigenvectors {vi�wj}, and correspond-

ing eigenvalues {aibj}.

Consider two systems S1 and S2. If the state of S10s is W1 on H1, and the

state of S20s is W2 on H2, we can represent the state of the combined system

S1þ2 as the statistical operator W1þ2¼W1�W2 acting on the tensor-product

Hilbert space H1þ2. If either W1, W2 is a mixture, then W1þ2 is also a mixture.

If, on the other hand, both W1, W2 are pure states then W1þ2 is pure. Suppose

that W1¼P[ ], and W2¼P[�], where  ¼�icivi and �¼�jdjwj. Then

W1þ2¼�i,jci djvi�wj, which is a superposition of eigenstates of A�B in

H1þ2. More specifically, if S1, S2 are in eigenstates of A, B, the combined

system S1þ2 is in an eigenstate of A�B. If W1¼ vi and W2¼wj, then

W1þ2¼ vi�wj, a so-called product state.

For an arbitrary (pure or mixed) state W1þ2 of the combined system, and

arbitrary observable A�B the Generalised Born Rule applies. The probabil-

ity that A�B takes a particular aibj value is given by:

ProbW1þ2ðA � B ¼ aibjÞ ¼ TrðW1þ2PijÞ

The expectation value of the ‘total’ A�B observable in state W1þ2 is:

ExpW1þ2ðA � BÞ ¼ TrððA � BÞW1þ2Þ

We will sometimes be given the state W1þ2 of a composite system, and

then asked to figure out what the reduced states W1, W2 of the separated
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subsystems must be. Given a couple of observables A and B on H1, H2, there

are some relatively straightforward identifications that help to work out the

reduced states, namely:

TrððA � IÞW1þ2Þ ¼ TrðAW1Þ

TrððI � BÞW1þ2Þ ¼ TrðBW2Þ ð�Þ

where I is the identity observable. This amounts to the demand that the

probability distribution over the eigenspaces of observable A(B) defined by

the reduced state W1(W2) be the same as that laid out over the eigenspaces of

A� I (I�B) by the composite state W1þ2, thus effectively ensuring that the

mere choice of description (either in the larger or smaller Hilbert space) of a

subsystem in a larger composite system has no measurable consequences as

regards the monadic properties of the individual subsystems.

Appendix 2: The insolubility proof

Consider three O-distinguishable initial states of the object system:

P½�1�, P½�2�, P½�3�

where �1, �2 are eigenvectors of O with eigenvalues �1, �2, and �3 is a non-

trivial superposition �3¼ a1�1þ a2�2.

Set up a Schrödinger interaction, in accordance with (QRUE) and (OOC):

ÛUtðP½�i� � WaÞÛU
�1

t ¼ �wnP½�ni�

whereby (QRUE) �ni¼ Ût (�i� �n) and whereby (OOC) 8n8i¼ 1, 2, 3: Î� Â

(�ni)¼�ni �ni.

By the linearity of Ût:

ÛUtð�3 � �nÞ ¼ a1ÛUtð�1 � �nÞ þ a2ÛUtð�2 � �nÞ

Hence �n3¼ a1�n1þ a2 �n2.

Now we can calculate:

ÎI � ÂAð�n3Þ ¼ ÎI � ÂAða1�n1 þ a2�n2ÞðAÞ
¼ a1ð̂II � ÂAÞ�n1 þ a2ðÎI � ÂAÞ�n2

¼ a1�n1�n1 þ a2�n2�n2,

and

ÎI � ÂAð�n3Þ ¼ �n3�n3ðBÞ
¼ �n3ða1�n1 þ a2�n2Þ
¼ a1�n3�n1 þ a2�n3�n2:

However, (A) and (B) are equal if and only if �n1¼�n2¼�n3, in which case

�n1, �n2, �n3 are not (Î� Â) – distinguishable. Thus (TPC) fails for this choice

of initial states of the system. QED.
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Appendix 3: Stein’s lemma and its implications

Stein’s Lemma: If Q and R are bounded linear operators on the Hilbert spaces

H2 and H1�H2 respectively; if � is a vector subspace of H1; and if for every

non-zero u2 � the commutativity condition Su¼ (Pu�Q) R¼R(Pu�Q)

holds; then there is a uniquely determined bounded linear operator T on

H2 such that:

Su ¼ Pu � T, for every nonzero u 2 �:

Application to the Measurement Problem: Take Q to be the initial state of the

apparatus, i.e. Q¼Wa, and R to be the inverse time-evolved pointer position

observable, i.e. R¼U�1 (I�A)U. It is straightforward that U(Pu�Q) U�1

commutes with (I�A) if and only if Pu�Q commutes with R. In addition,

according to the results in Section 4 of the paper, this commutativity condition

holds if and only if (QRUE) and (OOC) hold for Pu�Wa.

Stein’s lemma then shows that there is a uniquely determined bounded linear

operator T on H2 such that Su¼Pu�T. However the quantum statistical

algorithm predicts that the expectation of the pointer position observable when

the system is in the initial state Pu�Wa is: Tr (U(Pu�Wa)U�1 I�A)¼
Tr (Pu�T), which is equal to Tr (T) because the trace of Pu is one. So the

expectation of the pointer position observable is independent of the initial state

of the system, and no measurement at all has been carried out.
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