

The success of quantum mechanics!

- Good calculational tool!
- A framework in which we express our physical theories.
- No failures yet found, despite many tests (still ongoing)
- BUT:

(what) does Quantum Mechanics (QM) tell us about the physical world?

Features difficult to understand:

- Wave/particle duality, interference effects, non-locality, etc, as we all know.
- But there are more questions:
 - Does anything actually happen? Are there actual events independent of our immediate experience?
 - Are all measurements really position measurements, even though *precise* positions are never measured!
 - What happens <u>after</u> measurements?
 Are actual and virtual events the same or different?
 - Are all events really interactions?

What happens after a measurement?

- If we measure a 'system' described by wave function $\psi = a_1 u_1 + a_2 u_2$ to discriminate between the u_i , and u_1 is found to occur:
- What happens after to the 'unphysical' u₂? - Equally as real as u₁? many worlds/Bohm
 - Exists, but has no effect? decoherence
 - Dynamically reduced?
- new physics!

Dynamical Reduction?

- If it occurs: When and Why?
 - No: large superconductors – Large sizes?
 - Large distances? No: photons 20km apart No: see ∆E interferences
 - Energy differences?
 - Spontaneous?
 - Sportaneous? (GRW)
 Mind? (Wigner, Stapp)
 Gravity: is spacetime classical? (Penrose) ad hoc cat? virus?
- Scope for new physics!? ⇒ tests ongoing. Any law should be Lorentz-invariant!

Does wave function describe <u>anything</u>?

- Relation between observations / experiences?
- Does it tell us what exists? What is a 'system'?
- We agree that
 - cannot use naive models of particles or waves assuming a 'material world' leads to problems, if 'material' means 'solid' or 'fluid'
- I claim that: if we cannot find any idea of quantum
- existence, this shows <u>not</u> that there is <u>no</u> underlying world,
 but that we <u>lack imagination</u>!

Form, Substance and Dynamics

- Back to basic analysis:
- There are three categories of terms in physics: - existential terms about what exists

 - formal terms
 - about the structure & static properties of what exists - dynamical terms
 - about what would happen, in new and/or hypothetical conditions

 - only by hypothesizing dynamics, can we deduce the future.

Examples of Formal Terms

- shape, number, form, relation, configuration, symmetry
- function, field, oscillation, wave, flow,
- point, length, area, volume, amplitude,
- vector, matrix, operator, Hilbert space, bra, ket,
- ratios, relative frequency, probability, ...

DESCRIBED BY MATHEMATICS

Examples of Existential Terms

- particle, material, matter, corpuscle, body,
- fluid, ether,
- substance, actuality, reality,
- event, interaction, outcome,
- person, experience, observation, sensation, thought, feeling, ... – (we know we exist!)
- world, universe, ...

DESCRIBED BY ONTOLOGY

Examples of Dynamical Terms

- cause, propensity, disposition, power, capability, potentiality,
- energy (kinetic and potential),
- mass, charge, field coupling,

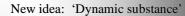
DESCRIBED BY (PHYSICAL) LAWS

- force, pressure, momentum, impetus, elasticity/rigidity,
- (for people: intention, motivation, skill, desire, • intelligence, ...) Dynamical properties say what would happen, even if it does not: A force says what acceleration would be caused if a mass was acted on Electric fields generates a force if and when a charge is present. Quantum propensities give probabilities if a measurement is performed.

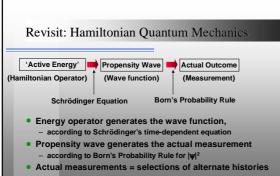
Summary of the Three Categories

Existence

Form

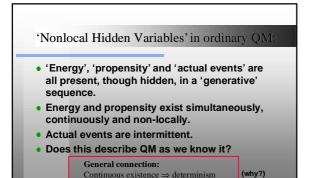

- shape, number, for relation, configura
 function, field, oscillation, wave,
- length, area, e, amplitude, , matrix, tor, Hilbert
- I. mass, particle, material, matter, corpuscle, body, 2. fluid, ether, 3. substance, actuality, reality, 4. event, interaction, 5. experience, observation, 6. world, universe.
 - tios, probability, lative frequency
- Construction
 C

Dynamics


THE TASK OF PHYSICS: To find connections between these, to explain some in terms of others, to describe the structure and dynamics of what exists.

Complete Physical Theory?

- Our challenge is to describe the quantum world in existential and dynamical terms, not just formally.
 - That is, talk of 'wave function' or 'probability amplitude' is not really sufficient.
 - Existence must contain/imply some dynamics!
 - We want to say 'what exists' as well as 'what form' it has:
 - What exists with the wave function as its form?
 What is its dynamics?
- Levels of Quantum Reality


- Try to derive 'existence' from 'dynamics'
- For example:
 - 'electromagnetic force field',
 - 'potential energy field' - 'matter is a form of energy'
 - wave function is a 'propensity field'
 propensity to <u>interact</u>, or
 - propensity to <u>choose actual outcome</u>
- Propensity (of some kind) is substance

'Energy', 'propensity waves' are two kinds of propensity.

Measurements are 'Actual Selections'

- · Actual measurements are selections of alternate histories
 - Unphysical alternatives actually removed by some (undiscovered) dynamical process.
 - This sets to zero any residual coherence between nearly-decoherent histories, if a branch disappears.
- Different alternatives *u_i* often summarised by an operator A of which they are distinct eigenfunctions: $Au_i = \alpha_i u_i$ and labeled by some eigenvalues α_i .

Continuous existence \Rightarrow determinism Intermittent existence \Rightarrow indeterminism

What does the wavefunction describe?

- The wavefunction describes dynamic substances, which are configuration-fields of propensity for alternate histories.
- The wavefunction of an 'individual particle' $\Psi(\mathbf{x},t)$ describes the 'isolated' propensity for x-dependent decoherent alternatives if these were initiated at time t.

Wholeness and Non-locality

- The propensity fields:
 - extend over finite space regions and time intervals, so are non-local,
 - act to select just one actual alternative,
 - subsequent propensity fields develop from the actual alternative selected,
 - 'whole' substances, but:

 - usually contain many 'virtual substances' (see later) in whole 'unitary compound'
 So express using <u>configuration space</u>, not in 3D.
 We need further analysis of 'quantum composition'.

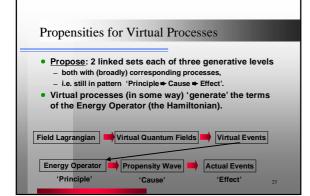
Multiple Generative Levels

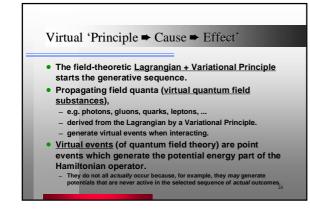
- · Description of ordinary quantum mechanics requires the idea of 'multiple generative levels'
- General idea:
 - 'Multiple generative levels' are a sequence A→B→C \rightarrow ... in which A <u>'generates'</u> or <u>'produces'</u> new forms of B using the present form of B as a precondition.

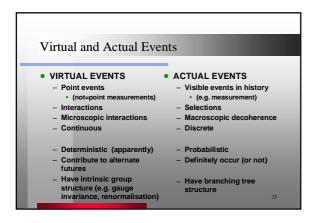
 - Then B generates C in the same way,
 - and so on until end when nothing is active.

Multiple Generative Levels II: Reality

- In the general case, Multilevel Propensities are 'parallel processes' all equally real.
 - Level B, for example, is not just an approximate description of successive forms of other levels A or C
 - Neither is B a microscopic constituent of either of levels A or C.
 - Rather, levels A, B, C,... are real processes 'in parallel' that interact with other by relations of 'generation' and 'pre-condition'.


Principles, Causes and Effects


- The sequence 'energy \rightarrow propensity \rightarrow actual event', does not have the three levels playing homogeneous roles as in the general case $A \rightarrow B \rightarrow C$
- If we look in more detail, we see:


 - energy ≡ 'principle'
 Conservation of energy via H governs the process
 - propensity ≡ 'cause'
 - Time evolution and propagation of influence
 actual event = 'effect'
 The final result
- Pattern appears to be: Principle Cause Effect 21

Potentials from Virtual Particle Exchange

- Where does the Hamiltonian come from? We cannot just invent it!
- We know that the potential energy part of the Hamiltonian really comes from field-theoretic virtual processes. What are these events?
 Kinetic energy, also, has a mass which is 'dressed' by virtual processes.
- Propose: the Energy Operator is itself 'generated' by (further) previous levels.

Complications: are all the stages needed?

- · Some physicists try to derive probabilities of actual outcomes directly from field theory, without a Hamiltonian or potential. Is the idea of a potential only an approximation suitable for some energy scales?
 - I would ask: Are there not still some roles for mass, kinetic and potential energy, & energy conservation?
 I agree that a Hamiltonian (etc) is a 'composite object', whose detail reflects its genesis:

26

A BIGGE	R Picture	?		
General Principle?	Formative Fields?	Formative Events?	(Formative?) Principle	– Spacet ime format ion?
Lagrangian	Virtual Quantum Fields	Virtual Events	(Virtual) Cause	- Some speculative - ideas!
'Active Energy'	Propensity Fields	Actual Selections	(Actual) Effect	– iutas.
Principle	Cause	Effect		- 27

Conclusions

- I hope that this is an accurate classification of the several 'stages' in nature, as seen in QM.
 Should help to understand quantum physics and what really goes on.
 - We <u>can</u> find 'what the wave function describes', if we think carefully and with imagination.
- More work needed to understand the mathematical substructures at each level,
 We should look for new physics (new theories and new experiments).